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ABSTRACT 
The Palomar  Testbed  Interferometer is an  astrometric  interferometer that uses both  phase 
and group-delay  measurements for narrow-angle  astrometry. The  group delay  measurements 
are performed  using 5 spectral  channels  across the  band from 2.0 to 2.4 microns.  Group  delay 
is estimated  from  phasors  (sine  and cosine of fringes)  calculated at each spectral channel 
using  pathlength  modulation of 1 wavelength.  Normally the group-delay is estimated to be 
the delay  corresponding to the peak of the power spectrum of the complex  Fourier  transform 
of these  phasors. The Fourier  transform does not however yield a least-squares  estimate of 
the delay. It is natural  to suppose that  the precision of phase  estimation  could  be  achieved 
in a group-delay estimate using  a  least-squares  approach. We describe the least-squares 
group-delay  estimator that has  been  iraplemented at PTI  and illustrate its performance as 
applied to narrow-angle  astrometry. 
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1. INTRODUCTION 
The Palomar  Testbed  Interferometer (PTI) is an infrared  astrometric  interferometer  located at the Palo- 
mar  Observatory  near  San Diego in  southern  California.  It was developed at the  Jet  Propulsion Labo- 
ratory  to  test  interferometric techniques  applicable to  the Keck Interferometer and  other  interferometers 
within NASA’s Origins  program. PTI was designed as a testbed for methods of narrow-angle astrometry 
and phase-referencing,  techniques that may  be used for the direct  detection of extra-solar  planets  in 
future space  missions. 

Astrometric  interferometers  measure  delay-line  position of two  or  more stars  and  added reference stars 
to estimate  the baseline orientatiol  and angular  separation of objects in the sky. Phase  measurements 
techniques are invariably used because  they  potentially offer the highest  resolution for delay  estimation. 
A zero-seeking  fringe  tracking  servo is used at PTI  to keep the measured  phase at  zero. The expected 
and rms  phase  error a$d for a  four-bin  phase  estimate is then  Wyant (1975): 

The rms  error  in delay inferred from a phase  measurement a$d using a white-light  fringe of central 
wavelength Xwl is therefore 

a $ d  - = ___ Awl Xwl 

27T 4vfi’ (2) 

where V is the fringe  visibility, N is the number of photons  per  bin,  and the effects of background and 
detector  read-noise  have  been  ignored. The oft-quoted  drawback of phase-estimation is the 2rr ambiguety 
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Figure 1. Group-dehy as  a functjcn of time showing fringe h o p  An example  under  relavitely  poor 
seeing conditions at the Palomar  Testbed 1nter:erometer. 

in  phase;  such that even though the rms  phase  error may be  small,  t'he fringe tracker  may occasionally (or 
perhaps  frequently) change its  tracking location by hopping  in delay one  wavelength, from the zero-phase 
location  on  fringe to  another. If the seeing conditions are  poor,  it may  be difficult to  estimate  the location 
of the central fringe in the fringe  packet, anc' the fringe tracker will erroneously  divide its  time between 
the brightest  fringes  near  the  peak of the coherence en.ielope. This  behavior  is  illustrated  in  Figure 1. 

The two  modern  astrometric  interferometers  presently in operetion, the Navy Prototype  Optical In- 
terferometer  (NPOI)  and  the  Palomar Testbed  Interferometer (PTI',, therefore use group delay estimation 
to  unwrap  phase  estimates; to unam1Jiguously determine the centr-,l fringe in the fringe packet.  In  each 
case,  although the details are somewhat different,, the group delay estimate is derived by measuring fringe 
phasors at several different wavelengths simultaneously and Fourier transforming the phasors. The power 
spectrum  thus derived will be featureless except for a peak at the  spatial frequency of the fringe  (cor- 
responding to  the delay) and  random noise. For example, at PTI a 5-pixel spectrometer is used that 
samples wavelengths from 2.0 to  2.4 pm. At each wavelength a four-bin  phase estimate is used to derive 
phasors  (the sine and cosine of the  phase)  that  are  then Fourier transformed. 

The variance of a group-delay  estimate is typically much worse that of a phase  estimate. A delay 
measurement by power-spectrum  analysis  can be  thought of as a1 excersise in  optimal  estimation, or 
function  fitting  in the presmze of noise. The signal-to-noise ratio of V 2  measurements at a delay s can 
be  written  SNR(s) = ] A ( S ) ! ~ / U ~ ,  where A(s) is the  amplitude of th:: Fourier transform of the fringe, and 
IT, is the  rms noise in the power spectrum.  Ideslly the respocse in the power spectrum is a sinc  function 
whose width is inversely proportional to  the  total bandwidth of the  spectrometer AK and whose height 
A is proportional to  the SNR of the measurements. The sinc function  may be  written 

sin m A n  

where a standard  fast Fourier  transform  (without  any  padding) would produce a power spectrum  with 
samples separated in delay by Ax = l / h .  The rrns uncertainty  in delay  IT^^ is therefore 
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Figure 2. Amplitude  groap-delay  estimates for the primary (top)  and secondary  (middle). This  data 
was used to estimate  the  tiwt:  iependex p k s e  #(t)  prior to reprocessing the  data. 

It follows that delay  estimation by phase  tracking  provides  an  rms  error  smaller than group-delay  tracking 
by a factor of 

(assuming that we can  ignore the hopping back and  forth from one  fringe to  another). For PTI, with 
an observation  bandwidth of 2.0-2.4 pm and a mean  observing  wavelength of Awl = 2.2 pm, we have 
therefore l /An  = 12 pm a.nd a variance of phase  estinlates that should  be 5.5 times  smaller than  that 
of group  delay  estimates.  There would therefore  be a significant  gain in performance if a group-delay 
estimator  could  be  formulated that would behave  as a phase estimator. 
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Figure 3. Comparison of the performance of the least-squares  estimator  with that of the  normal group- 
delay estimator. 

2. LEAST  SQUARES  ESTIMATION OF GROUP-DELAY USING  PHASORS 
When power-spectrum  analysis is used for group-delay  estimation,  typically the delay  corresponding to 
the  peak is found by interpdating between the highest, points in the power spectrum.  The  assumption 
implicit in  this  approach is that  the phase of the Fourier  transform at  the  peak is too noisy to be  trusted, 
and so should  simply  be  discarded.  Whereas  this would be  true at low-light levels, at  high  light levels it 
provides a means for better  estimates of group delay, with a precision approaching that of phase  estimates. 

If a zero-seeking  phase  tracker is used, we know that  the phase at the  central wavelength  is  always 
zero  (modulo 27r), but  that  the slope of the phase  as a function of wavelength  could  be  almost  any  value. 
An estimate of the  group delay will yield the number of fringes  across the  detector  and a phase  shift, 
which must  be  consistent  with the phase  being  zero at  the central  wavelength. 

The least-squares  estimator  can  be  described  as follows. The  data and  its corresponding  model, for 
sine and cosines is 

where we have  modeled a group  delay  x and an offset phase yi which may be  due  to  the source  or to 
the effects of dispersion  (ie. if the white-light  fringe is not  actually  centered  on  the  peak of the fringe 
envelope). 

The residuals to  the fit can  be  written as 
K 

[[cO cos(2.irnkx + 4) - fk12 + [cO sin(2.irmx + 4) - gk12] . 
k = l  
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Figure 4. Power spectrum of the  normal group-delay estimator  and  the  least-squares  estimator, shown 
along  with the power spectrum of the 4-bin phase  estimator used at, PTI. One would expect that  the 
least-squares  estimator would show similar performance  as the pnase  estimator  and have an  rms variation 
a factor of 6 smaller than  the normal FFT estimate. 

Expanding  each of the  terms  and regrouping we have 

K K 

[c: + f z  + gi] - 2c0 [ f rc  cos(27r~,kz -3- d) -1- gk s in(2n~kz  + $ ) I .  
k = l  k = l  

If we wish to  minimize the residuals we can ignore the series on the left side as  it is constant; we must 
find the values of z and 4 that maximize the series on the right.  Therefore, if  we wish to minimize the 
residuals we must find the values of z and 4 that maximize the following series: 

K 

2 ~ 0  [ f k  cos(2n~kz - 4) + gk s in(2n~kz  - $11 . 
k=l 

This least-squares  estimator is sensitive to fringe phase, whereas our  usual  amplitude  group-delay  esti- 
mator is sensitive only to phase-slope (derivative of phase as a function of wavenumber). 

Two passes  through the  data  are needed for the  data reduction: 

1. First  to determine  the dispersion introduced by the air delay line, the smoothly-varying  systematic 
difference between the group-delay and phase-delay - as a function of the  total delay term, which 
is the same for primary  and secondary, plus the systematic offset for primary  and secondary. 

2. Second to  re-run the least-squares  group-delay  estimator using the  proper model. 

The new model would look like 4 = $offset + const X total delay. 



. 
3. RESULTS:  OBSERVATIONS  AT PTI O N  98193 

The least-squares  algorithm was included in vis, the  standard  data reduction  program at PTI and  primary- 
primary  test  data was processed, most  notably  the night of 98193. Although an improvement was expected 
in  accuracy of a factor of 10 for data with a signal-to-noise ratio  greater  than 3, this was not seen. The 
histogram of the estimator showed several sets of peaks at equal spacings in delay, with the central  peak 
sometimes offset from the peak  located by the normal group-delay estimator. The width of the peak of 
the optimal  estimator, was perhaps only a third as narrow as  the GD estimator. 

The following items  are  understood to be true: 

e The usual,  or amplitude, group delay estimate  tracks the peak of the fringe envelope. 

e The real-time fringe tracker  tracks a position of constant  phase. 

e The peak of the envelope and  the constant-phase  location will  slowly drift apart with  time,  and 
will wrap  around  after 4 meters of delay-line motion . 

e The least-squares  estimator is a  phase  estimator. 

e The CT metrology  measures a phase that is correctly  unwrapped. 

e The CT metrology follows fringe hops introduced by the fringe tracker and  the changes  in  group 
delay that  are made 0.5 seconds (based  on the amplitude group-delay estimator calculations). 

e The fringe  trackers on each table  are  independent. 

4. DISCUSSION 

4.1. Does atmospheric  turbulence degrade the quality of the  least-squares fit? 
When  a  fringe  tracker is in lock, the delay line pcsition as a function, of tame is determined by the siderial 
motion of the  star, path-fluctuations  due to atmospheric  turbulence, and  random fringe  hops of one or 
more white-light wavelengths due to visibility fluctuations. 

The group-delay as  a  function of delay-line  positaon, depends  on the different dispersive pathlengths 
that  are encountered in each arm of the interferometer.  Atmospheric  turbulence adds changing  dispersive 
pathlengths  that  are  independent o f  the dela,y-line position.  These  path-variations are on the order of 
1 pm rms  for every meter of baseline, assuming an infinite outer scale (Tango and Twiss 1980, Eq. 4.2). 
So we have possibly 0.1 mm  rms of atmospheric delay introduced over the baseline PTI typically uses. 

Atmospheric  turbulence  adds  a negligible amount of noise to  our least-squares  fit. If the fringe  servo 
is locked, the group-delay will change by one wavelength for about every 4 meters of delay - and  then 
it will wrap. That implies that  the 0.1 mm  rms of delay introduced by the  atmosphere,  introduces noise 
in the group-delay at a level of about wavelengths rms. 'The ieast-squares fit is typically  done using 
data for which the delay has changed by several meters,  and so the -100 pm of atmospheric delay is 
entirely negligible. 

4.2. Why do the axnpli.tude group-delay estimates look so noisy? 
The  amplitude group-delay estimator usually works .with noisy data, has  relatively  poor  resolution, and 
often there  are instances where the  estimatm fails altogether,  producing  outliers  scattered at random 
locations  in delay. When the amplitude  estimator is performing well, there  may yet be fringe hops due 
to  visibility fluctuations.  Multiple  additive  fringe hops also serve to  spread the estimated  group-delay 
across  many wavelengths. E fringe hops are present, and  the  estinsttor is otherwise  performing well, the 
group-delay estim.ates may appear  as  sets of two or more paralld iiaes. 



If we were observing  a very bright star  and  the  atmosphere were perfectly stable,  the group-delay as a 
function of delay-line  position would be a straight line with a slope determined  by  the  dispersion.  There 
would be very few outliers  and  no fringe  hops - except for a single hop  every  four  meters of delay  when 
the  group delay  wraps to  the  other side of the fringe envelope. 

5. CONCLUSION 

The least-squares  estimator of group-delay  should  provide delay estimation  with the same  accuracy as a 
phase  estimator. It has been shown to work  well under  favourable  conditions - high  light levels, high  fringe 
visibility, and  good seeing  conditions - as would be  expected.  There is as yet an unresolved difference 
between the  its  potential  accuracy  and  the measured  rms  variations seen with  laboratory  experiments at 
PTI. There  has also  been  considerable difficult in reliabiy predicting the dispersion  one would expect as 
a function of delay, ana  it seems possible that the effects of atmos$leric water  vapor  have not yet  been 
fully understood. 

For this  implementation to be successful, we must  be  able to predict the longitudinal  dispersion 
introduced by the air  delay lines as well as any differential contribution  due to  atmospheric  water  vapour. 
The effects of water  vapor are of particular  concern, as it  appears  they may introduce a random  fluctuation 
of more than one wavelength  wkich obscures the linear term of the delay line. If this is the case then  it 
may prove impossible to predict  and  subtract  the dispersion  terms. There  are  strong  indications  that  the 
group-delay  refractive  index of air is  very  poorly  modelied at near-infrared  wavelengths.  During the 1999 
season, only  half a dozen nights  produced trends in groJp-delay that, were readilly apparent  in  the  data. 

This work  was performed at the  Jet Propulsion  Laboratory,  California  Institute of Technology, under 
contract  with  the  National  Aeronautics  and Space  Administration. 
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